
7 AD-AG92 137 NAVAL POSTGRADUATE SCHOL 
ONTEREY CA 

F/S 9/
nESIGN OF A SYSTEM INITIALIZATION MECHANISM FOR A MULTIPLE MICR--ETCCU)

UNCLASSIFIED

Iiiiiiiii~iAIE EE'.'
SOMU-.'!OEMmE

MEMEMEM



LLVL
NAVAL POSTGRADUATE SCHOOL

Monterey, California

°W L

K A i/E

THESIS
i SIGN OF A SYSTEM INITIALIZATION MECHANISM ;

0_ 07 I ff,

FOR A MULTIPLE MICROCOMPUTERo

~~by

lJohn Lee oss

'-Jun" I

Thesis Advisor: R.R. Schell

CApproved for public release; distribution unlimited

-J

S11 24 090



SECURITvY CLASSIFICATION Of tWOS MAflg t~ka, Dwe. Eoftd)

S REPORT-DOCUMENTATION PACE 99ESOMO UFORZ COMPLCTflftG FORM
i ROR U0 2. GoACESONN:II 1IO T'S CATAL.OG ou"feB

4 TITLE (mdSu6#DI*) a. TYPE or Q9POQy a PERIqOD COVERED

Design of a System Initialization Master's Thesis;
June 1980

Mechanism for a Multiple Microcomputer a. Pern~m Goa. REPORT NMBER

7. AUTORfso S. CONTRACT ON GRANT 11UMSER(e)

John Lee Ross
S. PERFR~MING OROANIZATION NOAM4E ANO ALOESS 10. PROGRAM CLEM91NT PROJECT. TASIC

Naval Postgraduate School 'A049A aWDRK UNIT NuMORS

Monterey, California 93940______________________________________

I I C.INTROLLING OFFICE NAME ANO ADDRESS 12. REPORT CATS

Naval Postgraduate School June 1980
Monterey, California 93940 Is. NUMS6111OF PAGES

_______________________________________ 101
4 MONITORING AGENCY NAME 4A £OORES5II fl. 1VN CORlt0ehaee Ofne.., IS. SECURITY CLASS (o is ~pe n)

Naval Postgraduate School
Monterey, California 93940 Unclassified

Is. DIRCLASSIVICATIOMIOWNmioADING

. DISTRISUTIO. STATEMENT (of tht* Reert 
CGIO L

Approved for public release; distribution unlimited

17. OISTainuTION STATEMENT tat t^- &&@#race mieerd in 8104k 20. If dieent NW ASP*"t)

IS. SUPPLEMENTARY NOTES

It, KEY WORD$ (Ceu'ltnue arp reere aide to Recessar mid Identfir OF bleek nomaerJ

mechanism for a multiple processor system. The design is
based upon a system of microprocessors (specifically the
Intel 8086) being used with a set of application processes,
as is common in many real time applications. The design
is based upon the concepts ofexplicit communicating
processes and explicit memory segmentation- although

D OA 1473 clyaoT OF a1 NMov as is OnsoLET Uncl ass ified(Page 1) SN00OO 41 SECURITY CLASSIFICATION Of TWOS PAGE (Who- De-f



adulse C £OPOCVfl0o0 V T111 00 *tf % Re. *,ee -

Vit does not require full hardware segmentation.
With the goal of simplifying the system initialization

function, this thesis segregates the required initialization
actions into three distinct phases. The specific phase for
each action is determined by which phase provides the most
supportive environment for that particular action

While the initialization mechanism described in this
thesis was developed for-a particular real-time application,
the design concepts described are applicable to a variety of
hardware and operating system configurations.

DD r Ta 3 147321InrAc qUCd
S14 r1M -C14 660 6 C1U19' C6,8oogg6ca O* or Tw$O P OIPM OO Does 11"oopod)

ii A 11 /l,. . .



Approved for public release; distribution unlimited

Design of a System Initialization Mechanism
for a Multiple Microcomputer

by

John Lee Ross
Captain, United States Air Force

B.S., University of Missouri, 1973

Submitted in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1980

Au tho r:

Approved by:

/ Second Reade'r

Cha an, rent of Computer Science

Ve-an 6fInfo oat d Policy SciencesTeiAdio



ABSTRACT

This thesis presents a design for a system

initialization mechanism for a multiple processor system.

The design is based upon a system of microprocessors

(specifically the Intel e066) being used with a set of

application processes, as is common in many real-time

processing applications. The design is based upon the

concepts of explicit communicating processes and explicit

memory sepmentation- although it does not require full I
hardware segmentation.

With the Poal of simplifying the system initialization

function, this thesis segregates the required initialization

actions into three distinct phases. The specific phase for

each -action is determined by which phase provides the most

supportive environment for that particular action.

While the initialization mechanism described in this

thesis was developed for a particular real-time application,

the design concepts described are applicable to a variety of

hardware and operating system configuraticns.
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I. IN TRODUCTION

A. OBJECTIVES

System initialization is the method used to get an

operatln& system loaded and runninR on a computer system.

This is a recurring requirement that must be accomplished

each time the computer is powered up and each time the user

wishes to change from one operating system to another. This

thesis presents a versatile, simple to understand, and

widely applicable system initialization mechanism based on a

careful sequencing of the initialization activities. These

activities will be performed in one of the three system

initialization phases addressed in this thesis based upon

which phase provides the most supportive environment for

each particular activity.

Traditionally, operating system designers have Ignored

the system initialization problem until the final

development stages. As a result, most existing system

initialization schemes are rather ad-hoc, using a mass of

"special case" activities to accomplish initialization. This

thesis addresses these problems by providing a framework for

a simple system initialization process that can be used with

a variety of hardware and operating system configurations.

The approach in this thesis is to make the system

initialization mechanism appear as much like a normal
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applications program as possible, and thus use the operating

system services to the extent. This approach is made

po i!'1e_ by two operating system concepts that are being

used in many current operating systems on large mainframe

and minicomputers, but have only recently been introduced in

the microprocessor arena. The first is the concept of

segmented memory. The second is the concept of asynchronous

processes, includinp an "idle process" so that the system

always "comes to rest" in a state that is easily created and

controlled. These two concepts permit the initialization

mechanism to avoid the special cases and ad-hoc methods used

in So many existing mechanisms.

B. MOTIVA ION

For several years, the Solid State Laboratory at the

Naval Postgraduate School has been conducting research in

the image processing area. A relatively recent area of

research has been in the development of "smart sensors" for

missile guidance, radar, surveillance, and other image

processing applications [11. Current sensor platforms relay

massive amounts of raw data to ground-based processing

centers. The smart sensor will provide on-board processing

of collected data such that only the initial processed image

and periodic updates need be downlinked to the surface.

Clearly, a smart sensor will require on-board electronics to

do the data processing.
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Several Naval Postgraduate Schocl theses, under the

supervision of Professor T. F. Tao, have contributed to the

development of the smart sensor. In 1977, Yehoshua [2] and

Evenor [;5 developed filter designs to improve infrared

backeround clutter suppression. In 197e, Hilmers [4] began

processing real-world infrared images. All the early

computer processing was done on an IBM-36e computer system.

In 1979, Celik [5] developed a simulation program on a

Digital Equipment Corporation (DEC) LSI-11 microcomputer in

an attempt to marry current hardware and software research

efforts. Due to its limited primary memory and slow

processing speed, however, the LSI-11 proved inadequate for

anything but simulation and experimentation. This spawned

additional research in the area of microprocessors and

microcomputer architecture. In late 1979, Brenner [6]

presented a multiple microprocessor system design, using

commercially available, off-the-shelf components, that could

process the algorithms developed in earlier research and

also provide real-time, or near real-time, system response.

Before that goal could te reached, however, an cperating

system was required to control the operation of the computer

system. This operating system would provide an interface

between the computer hardware and the user. The operating

system concepts used were based on the Multics operating

system [13,171 . The basic microcomputer operating system

design was developed by O'Connell and Richardson [l] . W. :.
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Wasson [7] refined and implemented the basic core, or

kernel, of the operating system. The system initialization

design presented in this thesis was developed concurrently

with the kernel of the operating system.

C. TERMS EXPLAINED

In order to facilitate the discussion of system

initializtion, a few terms should be clearly understood.

1. Operatinz System

The operatinR system is that set of program modules

within a computer system that govern the utilization of

cormputer resources [S]. These resources can be grouped into

four major categories: processors, memory, external

Input/Output (I/O) devices, and the secondary storape that

contains the programs and data.

2. Process

This thesis will refer to the word "process as the

internal representation of a computational task. Each

process can be uniquely characterized by its execution point

(viz., the state of its processor registers), and its

address space (viz., the memory accessible to that process).

Since only one process can be running on a physical

processor at a time, the operating system will multiplex a

number of processes onto each processor. While one process

is running, the other processes will be waiting their turns

to be scheduled and run. But, when viewed in the long term,
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each process can be seen as proceeding through its execution

(9]. This is consistent with Saltzer's definition of a

process as a program in execution on a pseudo-processor

(lei.

3. Hardware Configuration

The hardware configuration is defined as that set of

hardware components, or modules, present in the system. For

example, processors and memory modules are parts of the

hardware configuration.

4. Software Configuration

The software configuration is made up of the

processes, system tables, and system parameters. For

example, the number of processes allowed in the system at a

time would be considered a part of the software

configuration.

5. System Configuration

The system configuration will be the combination of

the hardware configuration and the software confizuration.

6. Application

An application is defined as a prorram that causes

the computer system to perform some useful work.

7. Virtual Environment

A key concept in this thesis is that of the virtual

machine environment. Briefly, virtualization results in a

hierarchy of levels of abstraction, each building upon the

facilities provided by the previous level. If the computer

14



hardware is considered as the lowest level, then the traffic

controller, or processor scheduler, could be the next hirher

level and ths appliations programs could be the hiehest

level. Thus each level of abstraction runs on the virtual

machine provided by the lower levels of abstraction, and

each level becomes a part of the virtual machine seen by

higher levels.

S. Core Image

A core Irrage will be described as an exact

representation of a sequence of instructions and their

associated data structures exactly as they would appear in

primary memory just prior to execution, but residine on some

secondary storage medium. This term is somewhat of an

anachronism, since core memory has been replaced by

semiconductor memory in most modern computer systems, but it

is descriptive of the concept, and will be used extensively

throughout this thesis.

9. System Initialization Phases

In one of the few publications dealing with system

initialization, Luniewski (11] views the system

initialization functions with respect to three phases, or

time periods. This thesis follows that same approach.

a. System Generation Time

The bootload medium (viz., a core image of the

operatinR system) is created at system Reneration time. This

normally occurs during a previous session of system

15



operation, or is done on a seperate development computer

system.

b. Bootload Time

Dootload time is when the lowest level of the

operatine system is actually loaded into the primary memory

and its system parameters and tables initialized.

c. Run Time

The period following bootload tire, when the

operatine system proRrams are runninR normally, is called

run time.

i. MultiprogramminR

This term describes a system in which two or more

processes can be in one of several "states of execution" at

one time. A process Is in a state of execution If it has

been started but has not yet been completed or terminated by

an error condition (e]. In this thesis, a process is said to

be "running" if it Is assigned a physical rocessor and its

instructions are beine executed. A process is ready" if it

could run, but is not currently assigned a physical

processor. A process is "blocked" if it is waiting, for some

event to occur (e.g., an I/O operation to complete cr the

completion of some action by another process).

ii. Mu!ltiprocessin,

This term implies that more than one processing

unit is present in the hardware configuration.
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Multiprocessing is used to achieve greater ;rocessing power,

reliability, and economies of scale.

12. The Dootload Program

A bootload program is a simple program written to

run on barp hardware. The bootload proeram is typiCally

stored in read-only memory (POM), although it may be

extended by a "bootstrap" prorra read in from a fixed

location in secondary storage. It is used to read the core

imaze of the base layer of the operating system from

secondary storage, load it into the computer's pri'ary

memory, and get the operating system running.

13. The Loader Process

The loader process is one of the modules that are

loaded in with the base layer of the operating syster,. It is

similar in function to the bootload program, but it is used

to load the higher layers of the operating syster and the

application programs. The primary difference is that the

loader process is used at run time, and makes use of the

operating system functions and services provided by the base

layer.

D. GENERAIL DISCUSSION

In general, the objective of system initialization is to

get the operatine system loaded into primary memory and

running so that it can provide the support farilities

necessary to run applications programs. This procedure is

17



carried out in three basic steps that correspond to the

three system initialization phases above. First of all, the

bootload program and the core image of the operating sysyem

are developed. This phase occurs prior to, and somewhat

independent of, the next two steps.

The bootload program is execvted in phase two of system

initialization. Its purpose is to read the tase layer of the

operating system from sorre secondary storage rrediup (e.R.,

magnetic tape or disc) and to load the data that it reads

into primary memory. The primary memory addresses are either

determined by the loader or are encoded in the data. The

secondary storage medium will co:itain the operatinp system

code and data structures. This second phase also involves

some preprocessing of the core itrage data in order that the

loader may initialize the processor registers and some

operatinR system data structures in preperation for running

the operating system programs. For example, the core image,

as it exists on secondary storage, contains load addresses

and some key processor register values. The bootload rrorarr

must strip off this information and use it to initialize the

registers and data structures as mentioned above. The

details of the bootload program will be discussed further in

Chapter III.

The last phase of initialization occurs when the

bootload proram passes control to the first executable
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statement in the operatine system code. At this point, the

operating system will begin its normal execution.

It is a basic premise of this thesis that actions

performed during system generation time or run time are

inherently simpler than the same action performed during the

bootload phase. Therefore, this thesis takes the positicn

that the entire system initialization process can be greatly

simplified if the core image produced in system generation

is as complete as possible, thereby reducing the amrount of

processing required at bootload time. The justification for

this line of reasoning should become clear In the following

chapter.

With the layered approach to system generation provided

by the virtual environment concept, the most difficult task

faced in system initialization is the bootloading of the

base level of the operating system. Once this has been

accomplished, the initialization process can take advantage

of the services provided by this base layer to carry out the

remainder of its activities. As subsequent layers are

initialized, more and more services become availatle and the

virtual machine seen by the system initialization process

becomes increasingly powerful.

E. HIGH LEVEL LANGUAGE PROGRAMMING

Since simplicity and general applicability are twc goals

of this thesis, the design described herein is oriented

19



almost totally towards a high level programrrirg language

(PL/M). The motivation for this decision came from several

sources. Nelson [12] reported a three-to-one increase in

productivity when a high level language was used instead of

assembly lantuawe. While the standard deviations he reported

were large, the evidence was overwhelmingly in favor of high

level lanzuames. Corbato, Saltzer, and Clingen [1.]

attribute much of the success of the Multics development to

the use of a high level proera.iming language (PL/i) and the

interactive debugginE that Multics provided. Brooks (14)

agrees that the increases in productivity and debugging

speed are overwhelminR reasons to use a high level language

in the design and implementation of systems programs. A high

level language will also serve as a communication tool for

anyone who reads the program listing. The logical structure

of the pro-ram can be reflected in the listing, and comments

may be inserted at will to clarify potentially confusing

portions of the program.

F. STRUCTURE OF THE TFESIS

With this chapter as an introduction, Chapter II will

present an overview of the environment in which this design

was developed and implemnted. This overview will incude the

hardware used in the project and a brief look at the

philosophy used in the development of the operating system.

Chapter III presents the detailed design and proposed

20



implementation. Chapter IV presents the conclusions reached

during the design of this system initialization mechanism,

and some recommendations for future research that might use

this design as a base.

G. SUMMARY

This chapter has provided the reader with the objectives

that this thesis hopes to accomplish, and with the

motivation behind the thesis project. It has introduce! the

reader to system initialization by defining some of the

terms used in the thesis, and by presenting a brief general

discussion of the initialization function. This chapter has

also explained the motivation behind the almost-exclusive

use of high-level language programming in the development of

the proRrams for this thesis.
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II. THE DEVEIOPAENT ENVIRONMENT

A. OBJECTIVE

This chapter will provide a detailed descriptior of the

environment in which the system initialization mechanism was

developed. It will include an explanation of the hardware

used to develop the design for the mechanism, some lasic

concepts from the operating system it is designed to

initialize, and some of the assumptions rade about the

multiple microcomputer system and the smart sensor

algorithms that the system is designed to run.

B. HA.DWAR E

As discussed in the background section of Chapter I,

when it was determined that the single LSI-11 microcomputer

would handle the processing requirements for a sr-art sensor

system, but would not achieve the desired speeds, the search

for a replacement processor suitable for use in a

multiple-processor computer system began. The decision was

made to focus the search on currently available commercial

hardware, since several other reseach activities were

exploring the use of specialized hardware for image

processing applications. Clock speed, memory size, the

number of address and data bits, the bus structure,

documentation, and availability were among the primary

22



selection criteria considered. The search initially

identified the DEC LSI-1i/23, the Intel e086, the Motorola

6eeee, and the Zilog Z8e£e as candidates.

The decision to use the Intel 8086 was finally made,

based upon its performance specifications, past experience

with other Intel products, and the fact that it was

commercially packaged for multiprocessor applications. The

fact that it was available off-the-shelf and supported with

a full product line of support software and peripheral

equipment also had an impact on the selection.

The Intel 8086 is a 16-bit, HMOS technology

microprocessor. It has a clock rate of 5 Megahertz (MHz). By

combininz a base address with an offset, it can directly

access a full Megabyte of primary memory. It is capable of

both 8-bit and 16-bit si~ned or unsioned arithmetic in

binary or decimal bases, including multiply and divide (15].

It achieves its relatively high speed throtgh a combination

of its HMOS technology and some architectural advancements.

A major factor in its architecture is the overlapping of

instruction fetch and instruction execution. An instruction

stream byte queue provides for pre-fetching up to six bytes

of instruction during the execution of previously fetched

instructions. The exact number of instructions prefetched is

a function of the instructions being fetched, since they

vary in lenpth.
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The one megabyte memory accessible to the e286 is viewed

as a Proup of segments that are defined by the application.

A segment can be described as a logical unit of memory that

may be up to 64 kilotytes long [15]. Note that the segment

leneth boundary is not enforced by the hardware. Tffective

address calculations are done with modulo 64k addition, so

attempts to access past this boundary result in

wrap-around" to the beginning of the segment. Fach seerent

is a set of contiguous locations and is an independent,

separately addressable unit. As seen in figure II-1, at the

hardware level segments may be totally disjoint, adjacent,

partially overlapped, or fully overlapped. Fowever, the

integrity of this operating system design demands that two

segments of a process can never overlap. To access a

particular memory location, it Is necessary to provide the

base address (viz., in a processor base register) of the

segment that contains that location, and the offset frcm the

base address to that location. The base address must be an

even multiple of 16. To obtain the effective address, given

the base and offset, the 8eE6 performs a left shift of four

places on the base address, zero-filling from the low-order

end. This shifted base register value is the added to the

address offset. This results in a 20-bit effective address,

and hence the one megabyte address space. Figure 11-2

represents the address-formation process.
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The processor has direct access to four segments at any

one time [15]. Their base addresses, or starting locations

are contained in four segment registers. The Code Segment

(CS) register points to the base of the code seF-nent, from

which instuctions are fetched. The value contained in the

Instruction Pointer (IP) register gives the offset, from the

CS value, to the next instruction to be executed. The Stack

Segment (SS) register is a pointer to the base of the stark

segment. Stack operations are performed on the locations in

this seement. The Data Segment (DS) repister points to the

current data segment, that is used to maintain program

variables. There is also available an Extra Segment (ES)

register, that may point to an additional segment used for

data storage.

Another major factor in the selection of the Intel 9086

was the availability of the Intel iSIC F6/12A single board

computer. The 86/12A is a complete microcmputer system on

one 6.75 by 12.e inch printed circuit board. The version of

the 86/12A used in this design contains a 5MHz ECE6

processor, 32K bytes of random-access memory (RAM), 8K bytes

of electrically progammable read-only memory (3PROM),

programmable serial and parallel I/O interfaces, a

programmable interrupt controller, a real-time clock, and an

interface to the Intel Multibus for interconnection to other

devices [15]. At the hardware level, the 32K bytes of RAM is

dual-ported. That is, the RAM on one board in a

27



multi-computer system is available to all the other

processors in that system. The on-board RAM of each E6/12A

is actually seen as two address spaces in a multi-computer

confi-uration. However the operating system design does not

support, nor can it tolerate, a segment having two

addresses. The dual port feature is used during system

initialization, but this is a temporary measure, being used

until a suitable bootload program is available in the 1PROM.

The processor on the same board sees its local memory as the

address space between 00000H and 3 2 eH. The other toards in

the system see that same RAM as a different address space;

the exact address range depends on the board on which it

resides and the strapping options employed in the hardware.

Figure 11-3 shows a system diagram of the iSBC 86/12A single

board computer.

The hardware configuration of the multiple

microprocessor system used in this thesis project is shown

in firure 11-4. It is housed in an Intel ICS-PO chassis,

which provides the power supplies, cooling fans, and the

Multibus connections. System components include a Mu-Pro

128K byte error detecting/error correcting RAM board and up

to six iSBC 86/12A's. Near-term hardware enhancements

include a Multibus interface to a hard disc system for

on-line secondary storage, and an image display devi.e Por

smart sensor software development.
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Program development was done on an Intel INT!'LLEC-II

microcomputer development system (:IDS). Since no secondary

storage was available on the multiple microcoMDuter syster,

the P'DS system was used to simulate secondary storage for

the 86/12A's. A prograrr written for the MDS provides

communication to one of the multiple microcomputers via a

serial-port-to-serial-port connection. The bootload program

and the operating system loader view the port just as if it

were the interface to a secondary storage device.

As shown in figure 11-4, the two computer systems are

also connected by an Intel ICE-E6 In-circuit emulator [161.

The ICE-86 is used to aid in program development. In this

application, it is also used to load into the 86/12A's those

programs that will eventually reside in EPROM. Since the

86/12A's do not have direct access to secondary storage via

the system bus, the run-time loader process that runs on the

processor connected to the MDS via the serial port link must

perform the disc I/0 function and make the disc data

available to the other loader processors. dhen the hard disc

is installed, all the run-time loader processes will be

identical. Until that time, the method described above and

detailed in the next chapter will be used for system

initialization.
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C. OPERATING STSTEM BASICS

The operating system developed for the microcomputer

system described above was written by W. J. Wasson [7] in a

thesis project that was done concurrently with this thesis.

It uses many of the concepts developed for the Multics

system [17], and is an extension, with a few chanoes, of the

distributed operating system concepts presented by O'Connell

and Pichardson [1%=]. The operatine system, is intended to

provide an interface between the user and the hardware such

that the underlying hardware configuration is made

invisible, or at least of no direct concern, to the user.

This section of the thesis is intended as a basic

intoduction to those operating system concepts and

mechanisms that directly affect system initialization. The

reader is referred to the thesis by Wasson [7] for

additional details.

1. Processor Multiplexinz

This operating system makes use of the virtual

environment concept introduced in chapter one. This concept

provides a layered operating system consisting of several

levels. At the lowest level is the Inner Traffic Controller,

whose function is to multiplex Saltzer's pseudo-

processors" [10] onto the physical processors present in the

system. The primary data base used by the Inner Traffic

Controller is the Virtual Processor Map. A virtual processor

is defined as a "simulation" of a processor ussing a physical
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processor to interpret the instructions "executed" by the

simulated processor. This data structure contains the

virtual processor execution state, its schedulinR priority,

interprocess communication information, a descriptor for its

address space (represented by the location of its stack

segment), and a scheduling flag that signifies that the

processor has been sent a virtual preempt interrupt by some

other virtual processor.

At the next level is the Traffic Controller. The Traffic

Controller serves. to multiplex processes onto these

pseudo-processors. The data structure used by the Traffic

Controller is called the Active Process Table. This table

contains the information needed to get a process loaded onto

a virtual processor and running.

Wasson also provides a "Gate" module at the next level

to simplify the user's interface to the operating system

functions by providing a single entry point to the lower

levels of the operating system. The programmer interfaces

with all operating system functions by making a "call" to

the gate module using the parameters for the requested

function as arguments in the call.

2. The Process Parameter Block

In addition to loadinz the processes into rremory,

system initialization must also identify these professes to

the operating system so that they can be scheduled and run.

The initialization mechanism described in this thesis uses a
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Process Parameter Block to pass process definition

parameters to the process creation function of the operating

system. The Process Parameter Block is a per-processor

artifice into which each run-time loader process stores

definition parameters for the process being loaded. When the

operating system is ready to create [73 the process, it

extracts the parameters fron the Process Parameter Block.

Since processes are loaded and created one at a time, the

memory locations in the parameter block can be reused for

each process. As seen in figure 11-5, the Process Parameter

Block contains values for all the processor registers

associated with a process. Only the CS, IP, and SS register

values are of concern in this thesis, but the structure was

designed to provide easy expansion during later research.

The Priority Is used by the scheduling algorithm. The

Affinity is used to bind a process to a particular

processor.

3. Interprocess Communication

Of primary importance to any multiprogramming or

multiprocessing system is Inter-process communicatloL to

synchronize cooperating processes and control access to

shared resources. This operating system uses the

"Eventcounts and Sequencers" mechanism proposed by Kanodia

and Reed [19]. A summary of this mechanism is provided here,

since Interprocess communication is vital to the run-time

loader processes.
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An eventcount is a system variable that represents a

class of events that will occur in the system. A virtual

processor can perform three primitive operations on

eventcounts. It may obtain the current value of an

eventcount by performing a R3AD of that eventcount. It can

increment by one the current value of an eventcourt by doing

an ITCADVANCE on that eventcount. Finally, a virtual

processor may await the occurrence of a particular event

within the class of events associated with an eventcount by

doing an ITCAWAIT on that eventcount. This mechanism can be

simply viewed as using a counter to control the virtual

processors. However it offers an advantage over the

traditional semaphore or mechanism. The cccurence of an

event can be broadcast to several virtual processors who

might be awaiting it. This is more difficult to achieve with

more traditional interprocess communication schemes.

D. DEVELOPMENT TOOLS

As mentioned earlier, all program development was done

on a seperate development computer system. One major

advantage of using such a system is the supportive

environment it provides the programmer. This support is in

the form of the software development utilities available

from the manufacturer of the development system. In the

development of the system initialization programs for this

thesis, the decision was made to take full advantage of
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these utility programs. In addition to the PI/M-26 corpiler,

three other utility programs, provided by Intel, are used

extensively during the system peneration phase to create the

core image of the operating system to be loaded during the

bootload phase. These three Intel programs are called

LINK86, LOCE6, and OHS6 [20]. They are used to perform the

functions of linking, locating, and object file

transformation. Each of these functions is discussed below.

Appendix A contains annotated sample outputs from the

development utility programs described in this section.

1. Comiling Program Nodules

The PL/M-E6 compiler (211 , in addition to

translating the high-level language statements into OE06

machine instructions, offers four mode options. These

options let the programmer determine the dezree of

segmentation to be used. The SMALL option tells the compiler

to produce only two segments. One segment combines the code

sections of all the modules in the program (or prograr

section). The other segment contains all the constant and

variable data and the stack. This mode provides the greatest

run-time efficiency, since the Code Segment repister and the

Data Segment register (which in t.is mode is identical to

the Stack Segment register) do not change during run-time.

The trade-off is that the total size of each of these

segments may not exceed 64k bytes, and that there is very

little memory allocation flexibility.
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At the other extreme is the LARGE compile mode. In

this mode, the code section of each module is allocated a

separate segment. The same is true for the data section of

each module. The stack sections of all modules are combined

to form a single stack segment. This mode pairs up the code

and data segments of each module and insures that the CS and

DS registers always contain the values from the same mcdule.

In this mode, the total amount of code and data may exceed

64k bytes, but any one segment is constrained to 64k.

The COMPACT and MEDIUM modes fall in between the two

modes discussed, and offer differing degrees of segment

seperation. The PL/M-96 Compiler Operator's Ianual [211

states that all modules in a program must be compiled in the

same mode. To maintain flexibility and to achieve the finest

granularity of segment control, the LARGE mode is used on

all operating system and application program modules run on

the computer system used for this thesis project.

2. Combining Program Modules

LINK86 is a program used to combine the separately

developed and compiled program modules into a relocatable

object module. When these separate modules were compiled,

all addresses were relative to the -eginning of each module.

LINK26 accepts these separate modules as input, and produces

as output a single combined module whose addresses are

relative to the beginning of the linked output module. in so

doing, it resolves all intermodule references to variables
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and procedures. The availability of the linker permite the

programmer to develop small, managable program rcdules that

can be debugged and maintained separately, and then bound

into a single module prior to loading.

3. Assigning Memory Locations

The L0C86 program takes as input the relocatable

object module from the linker and produces as output an

absolute object module in which all addresses have been

converted to physical memory locations. It also produces a

memory map which reflects the binding performed and a symbol

table that shows the memory location assigned to each

variable, label, and procedure. LOC86 also allows the user

to specify exactly where in memory he wants the various

modules of his program to be located.

4. Object to Hexadecimal File Conversion

The output of the locator is an absolute object file

of the input. This object file, as it exists on secondary

storage, is a sequence of binary digits. Encoded in this

sequence of binary digits are all the machine instructions

and data necessary to run the process. Before execution can

actually take place, however, certain key processor

registers (viz., the code segment, instruction pointer, and

stack segment registers) must be initialized to their proper

values. This is one of the responsibillties of the

initialization mechanism. These values are contained in the

binary object file. For the equipment used in this thesis,
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the exact format of the data in these object files was not

presented in any documentation available from the

manufacturer. Before the initialization mechanism can

perform any programmed action on the object files, it must

have, or be able to ascertain, the file format. Fcrtunately,

there is a file conversion program, called OF6, which

converts this binary object file to the hexadecimal ASCII

format. This program, and the output file it produces, is

well documented. In an effort to expedite development of the

initialization mechanism, it was decided to use the OHF6

program and convert the object files to ASCII, so that they

could more easily manipulated.

There is, however, a storage space trade-off to

consider. For example, the eizht-bit binary value, 0I0

1111, is read as 4F in hexadecimal. To encode this In ASCII,

one byte is required for the ASCII representation of the

4(ee11 oie), and one byte is required for the F(OIe V110).

This representation scheme requires twice as much storage in

the MDS as the binary form, but because of lirited

documentation it makes the development of the initialization

mechanism much simpler. The bootstrap prograr and the loader

process in this thesis contain a simple prccedure which

converts this ASCII representation back to binary before

storing the data, so there is no waste of memory in the

multiple microcomputer system.

40



E. ASSUMPTIONS

In an effort to expedite work on the algorithms for the

smart sensor, several assumpticns were made which would

simplify the design of the initialization mechanism and the

operating system. This simplification primary involves the

allocation and partial completion of some operating system

tables used at run time. These tables are used to describe

to the operating system the set of processes that will te

running, and the hardware configuration that it will be

running on. In a general-user computer system, some of these

assumptions might not be valid. Future systems programs

developed for the multiple microcomputer system may wish to

generalize the system initialization m echanism to eli inate

some of these assumptions.

The key assumption made is that the run-time environment

is very static. That Is, the set of processes to be run and

the hardware configuration is known at system generation

time, and remains constant during run time. This assurption

is justified by the fact that the algorithms to do the

processing experimerts for the smart sensor system can be

partitioned into processes before the actual processinrg is

done. Therefore, a lot of information about these processes

can be determined during system generation and passed to the

bootload and execution phases. For example, all the

processes that will be executed at run tire can be

identified at system generation time.
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Luniewski[li] also states that in order to simplify

initialization and still permit dynamic reconfieuration [9],

some minimal hardware configuration should be assured by the

initialization mechanism. This is intuitive, since without

at least one processor and some amount of primary memory, a

computer can do no useful work. Given this minimal hardware

configuration, that is a subset of the largest potential

hardware configuration, the initialization mechanism could

employ dynamic reconfiguration to establish the actual

hardware configuration. In an effort to maintain simplicity,

this thesis does not attempt to implement dynamic

reconfieuration. Instead, the hardware configuration assumed

by the initialization mechanism is the full set of hardware

present in the system. Since fault-tolerance, which requires

the capability to dynamically reconfigure the system, is a

long-term zoal of the smart sensor program, continuing

research is being carried out to give this initializaticn

mechanism that capability.

These assumpmticns permit linking and locatin of the

user's modules with the same justification as is used for

the operatinp system modules - they do not change durinR the

lifetime of one initialization. Thus they can be treated the

same as the system processes, and their linking and locating

can be performed during system generation. While this

approach is contrary to the accepted practice of delaying-

the binding of logical resources (viz., memory seprents' to
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physical resources (viz., memory locations), to enhance

system flexibility, it is fully justified in this

application by the fact that the environment is staule.

The most important item of information that this

assumption provides is a partial definition (viz., the

address space) of each process that will be run. This allows

the Process Definition Table, shown in figure 11-6, to be

created during the systen generation phase. The information

in this table includes the process name (used to address its

MDS file), its initial CPU registers, its stack base (used

for process creation), its scheduling priority, and its

processor affinity. Processor affinity implies that the

programmer can state which physical processor his process

will be run on. This is important in the case of a system

with dissimilar processors. For example, one single board

computer might be enhanced with a hardware multiplier

circuit, or a special-purpose 1/0 processor. Also included

are the initial CS and SS register values. This structure is

created from information provided by the programmer who

developed each process.

Another important function that can be done at system

generation time is the allocation of specific segments to

the local on-board memory or to the global shared RA,'.

O'Connell and Richardson [18] present the design of an

automated decision technique for memory allocation. Their

design calls for a dynamic memory management scheme. That
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is, memory allocation and deallocation is a run time

function. The mechanism proposed in this thesis performs the

same memory allocation tasks, but they are performed during

system generation. The global-vs-local decision is based on

the two-by-two decision matrix shown in figure 11-7, and on

a manually- maintained memory map that keeps track of the

free and allocated portions of memory. Note that the upper

lefthand quadrant of the decision matrix in figure 11-7

shows two possible choices for locating shared,

non-writeable segments.

While memory can be conserved by locating shared data in

global memory to avoid duplication, the choice in this

design is based upon the desire to keep as many seements as

possible in the local, on-board memory of the using

processor. Since each access to -lobal memory requires

exclusive use of the system bus for the duration of that

access, all other processors who might want to access global

memory durine this period are forced to wait until the bus

is free. For this reason, accesses to global memory shculd

be held to a minimum. This can be accomplished by locating

all executable (viz., pure) code and as much data as

possible in the local RAM, and using global storage for only

those variables and data that are shared and writeable.
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F. SUMMARY

This chapter has presented the environment in which the

design described in this thesis was developed. It has shown

the hardware involved, an overview of some inportant

operating system principles, a look at the software

development utilities used in system generaticn, and the

assumptions made in the thesis and their implications. With

this inforiatton as background, the thesis will present, in

the following chapter, the design of the initialization

mechanism developed for this thesis.
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III. THE DESIGN

A. OBJECTIV17

This chapter will examine the different environrents in

which the three phases of system initialization - system

zeneration, bootloadine, and run time - take place. This

discussion will unfold the design of the initializa*ion

mechanism developed for this thesis. It will also provide

the reader some insight into the sequencinp of the

initialization activities and how the timing of t-ese

activities effect the complexity of the initialization

process. As this discussion progresses, more and more

references will be made to operating system functions and

services. The reader desiring more details on the operating

system, per se, should refer to the thesis by Wassont[7 for

a more complete explanation.

B. OVERVIE'W

Chapter I discussed the purpose of system initialization

and the three phases of initialization used in this thesis.

Recall that during the system generation phase, the bootload

medium, a core image of the base layer of the operating

system, was created. The other two phases- bootload and run

time- perform the loading of this core Image as well as the

remainder of the operatInR system and the application
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programs from secondary storage into the computer system's

primary memory. The initialization mechanism proposed in

this thesis involves two seperate loading functions. Recall

that the bootload program, which runs on the bare hardware,

is used to load the base layer of the operatinp system into

primary memo ry and start it running. This program Is

normally ROM resident so that It may be started by

activatinp some hardware "Reset" or "Bootload" switch.

The second loading function is part of the distributed

operating system, and is loaded into each processor durinp

the bootload phase along with the base layer of the

operatinp system. This loader is used durinp run time to

load the remainder of the operat ng system and the

application proerams and to prepare them to be scheduled and

run. This dual-loader approach is comrmon in most exisinR

initialization schemes, and will be discussed in detail

later in this chapter.

In this application, since only one processor has access

to secondary storage system on the MflS, the run-tire loader

on this processor is a slightly enhanced version of the

loader process that runs on the other prccessors. These

enhancements include a "disc I/O" routine, to allow that

loader to access the MDS disc information sent to the e6/12A

serial port, and a procedure to check the Process Lefinition

Table to determine when the loadinp function for this
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process is complete. For ease of discussion, this enhanced

loader will be referred to as the controllin- loader.

C. THE SYSTEM GENERATICN SEQUENCE

Pefore the loading begins, however, there is some

preliminary work to be done that will simplify the remainder

of the initialization. This work is done durnin system

generation. As discussed in Chapter I, this thesis proposes

that actions performed at system eeneration time or

subsequently at run time are inherently simpler than that

same action performed at bootload time. This is due to the

more supportive envircnment available at system generation

time, and the operating system services available at run

time. Compare these to the bare-hardware environment at

bootload time, and the reasoning behind this premise becomes

clearer. A look at the envircnment in which system

generation takes place will prcvide additional justification

for the proposal.

since system generation takes place prior to the

bootioad and execution phases, it enjoys the suppcrtive

environment provided by an existing operating system ard any

available utility and library routines. As mentioned in

Chapter II, the program development for this thesis was

accomplished an Intel Intelle ' Microcomputer revelopment

System (mDS). The design proposed in this thesis makes

extensive use of the utility programs available in that
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environment to accomplish the system generation tasks.

System gereration also enjoys the luxury of time. The use of

the ISIS-I operating system in the M4S serves to reduce the

complexity of the bootload and run time phases.
Because of the static nature of the image processing

applicaticn for which this initialization scheme was

designed, the system generation phase can make the

assurptions reardin the hardware corfieuratior and the

nature of the application programs discussed in Chapter II.

These assumptions permit extensive preliminary processing to

be done in the more comfortable environment of system

generation. This relieves the later phases, which occur in

much less supportive environments, of the preparatory

processing that they would otherwise be required to perform.

By assuming that the hardware and software

configurations are known at at system generation time, that

they will remain constant from one initialization to the

next, and that dynamic reconfiguration is not an Issue, all

remory allocation decisions can be made during system

generaticr. As discussed in Chapter !N, the decision as to

whether a segment should be placed in local or global memory

Is based on a two-by-two decision matrix. The main

-. difference between the Richardson and O'Connellr9I]

allocation scherre and the scheme employed in this thesis is

that the schere used here is manual, rather than automated.

This means that that memory allocation is a one-tire system

51



generation raquirement rather than on cn-goin7 run-time

function. The O'Connell and Richardson [1P] decision matrix

and memory irap are maintained on paper, by the person

generating the system, rather then as data structures

maintainel by the the system initialization mechanism.

The simplest way to view system generation Is as a

time-sequence of events, beeinning with program design and

ending with the creation of the load module, or core image

to be loaded. A detailed examination of this sequence of

events will provide a foundation for the design choices made

throughout the development of the initialization mechanisT

described in this thesis.

1. Program Design

The operatinp system and initialization scheme

developed for this project rely on the programmer to design

his programs to take full advantage of the multipropramminp

and multiprocessing rapabilities provided ty the hardware

and the operating system. This requires that the programmer

be somewhat, though not intimately, faillar with the

operating system philosophy and the harddare corfiguration.

Given this basic rnowledge, and the widely-accepted

technique of structured programming, it is relatively easy

for the programmer to design the required process structure

into his programs. This involves partitioning each

application into a group of cooperating processes, and

includlin in each process the necessary operatin, system

52



calls to provide inter-process synchronization, and

explicitly declarin- shared memory serrents for

communication between processes.

In th development of each process, there are some

simple "ground rules" the programmer should follow to

simplify memory allocation and enhance the performance of

the system. First, all data shared by processes should be

declared to be in sements which are "external" to the

anlIcation procedure [22]. This implies that the variable

is declared and defined elsewhere. Furthermore, an absolute

memory address must NEVER be coded into any application.

Second, all program code should be reentrant F22]. This

allows each invocation of a procedure to store its varialles

on the process stacy. Thus one invocation will not overwrite

the variables used by the previous invocation, as would be

the case if the variables were stored as part of the

procedure itself. The third ground-rule is imposed to reduce

the system bus contention problem discussed in Chapter II,

and rerely requires that references to shared, writeable

variables and structures be held to a minimum. This

typically involves a single read reference to "irput" data

to the process and a single write reference to "output" the

data (results). In particular, shared seements should never

be used for temporary or intermediate results. The fcurth

rule requires that the programmer sepregate writeatle and

readable segments whenever possible. This will allow finer
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eranularity in the memory allocation process. Firally, the

programmer must declare the Gate rodule as an external

procedure in every process to be rvn. This will resolve a1l1

the external references to the operatir syster irterface.

The programmer is also given the respnnsibility of

initially identifyinp his proces5 to the o~eratin system.

Recall that a process can be identified by its address space

and its execution point. Therefore, the rog rammer must

identify all the segments in the process address space and

must identify which of these segments will be modified

(written into) by this process. Furthermore, the prcgrammer

must Ident! fy the initial entry point, and any parameters

passed to this entryr point. This information is actually

provided to the system operator, who prepares the Process

Defirition Table and makes the memory allocation decisions

based on the full set of initial process identification

information, as discussed below in the section on memory

allocation.

2. Compilation

After the proram has been developed and written, it

must be compiled. The compiler translates the hiph-level

language code into machine language instructions. For this

application, an additional check is made at system

generation time to insure that all program modules have been

compiled with the same mode option. Recall from Chapter II

that the rompiler mode option determines the degree, or
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Rranularity, of the segmentation. This information must be

suDplled by the programmer, since he is the one who Derforrrs

the compilation.

3. Linkin-

The third step in the system generation sequence is

the linking together of the various modules that make up a

process. Since the programmer knows exactly which modules

comprise his process, he is in a position to pre-link these

modules. Since each process needs an interface to the

operating system, each process is also linked to the Gate

module previously described. This implies that each process

has declared the Gate module as an external procedure.

4. Memory Allocation

While the programmer is in the best position to

compile his modules and link them into individual processes,

he is not in a position to know the de,-ree of se,'ent

sharing that will take place. Neither is he in a position to

know where, in the system merory, other prograrmers might

elect to loa their processes. Clearly the memory allocation

decisions must be centralized to avoid chaos. The computer

system operator, or perhaps a "chief programrrmer", is in the

best position to make these decisions. This thesis will

assume that these decisions are made by the operator as part

of the syster Peneration process. As mentioned in Chanter

II, the global-vs-local decisions are made using, a decision

ma tri x.
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Tut the decisions as to the specific memory locations to

allocate for each segment require some information frorr the

prozrammer. Specifically, the proprammer must provide a list

of the segments in the address space of his process, the

length of each segment (which is available from the linker

outDut), and whether each segment is writeable or

non-writeable. The identification of segments must be unique

across all processes in the system to insure that shared

segments can be unambiguously distinguished. Figure III-i

shows a suggested Process Information Form which miht be

used to standardize the content and format of this

information. The form contains one entry for each segment in

the address space, and indicates which of the above

attributes apply. The programmer is also asked to identify

which other processes will share each sezment. This is used

only to cross check for possible design errors in

interprocess corrmunication. The per-process list also

includes the initial parameters, the process priority, and

processor affinity information that the operator needs to

build the Process Definition Table used by the bootload

program and the run-time loader processes. This information

form is provided for each application process and

(separately) for the operating system kernel for each

physical processor. The kernel includes only one per-process

data sepment: the kernel stack. Since the kernel Is linked

only once for each processor, the operator must "create" the
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PROCESS INFORMATION LIST

PROCESS NAME: PRIORIIT: AFFINITY:

Initial Parameters: SS: AX: BX:

CX: DX: ES:

INDEX SEGTMENT NAME LENGTH READ RD/WT SHARN1, FROCESSES

1----------------------------------

4

Process Information Form

Figure III-i
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corresponding stack for each process. As discussed by Wasson

[71, the kernel stack must be allocated as a logical

extension of, and at a lower address than, the stack segment

for each process.

Armed with this process information list and the

allocation decision matrix, the operator is now prepared to

make the actual allocations of specific memory locations to

sepyments. Since he is, in effect, the Memory Manaper -rocess

described by O'Connell and Richardson [is, he will maintain

the System Memory maps, for both local and global RAm, which

reflect the status of the system memory. As shown in figure

111-2, the memory map ccntains the base address and length

of each narred segment and the base address of the free or

unallocated areas of memory. The memory map is completed as

a sorted list to aid in detecting allocation errors made by

the operator. The local and global memory in the system is

allocated separately; only shared, writeatle segments are

allocated to global memory. A useful guideline is to

allocate all local kernel seements at addresses below the

applications so that applications stacks can never

overflow" into the kernel. Recall from above that the

operator must add a kernel stack sement for each process.

It Is also up to the operator to avoid "checkerboarding", or

fragmentation, the conaition in which many small free areas

exist whose combined sizes are large enouph to contain a

segment, but none are large enouph alone. This condition can
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usually be avoided by careful allocation, but it may also

involve some trial-ard-error to obtain a proper fit.

5. Locating

Once all the allocations decisions have been made,

the actual assignment of physical memory locations is made

using the locator utility program, LOCS6. The system

operator passes the allocatinn decisions rrade for each

process to LOC86 as parameters. These parameters indicate to

the locator the base address of each segment, includine the

kernel stack, in the process address space.

The operating instructions for 10C86 contain the

options and parameters required to control remory allocation

(20]. The output from the locator is the binary core imaRe

of the process that was input to it. This image is complete

with load addresses for the code and data in the process, as

well as the CS and SE register values necessary to start the

process running. The locator is run once for each

application process, and oncP per CPU to locate the

distributed operatinz system kernel that is available

through the Gate to all processes.

6. File Conversion

As discussed above, the memory manaeement function

was not automated due to the lack of documentation

concerning binary object files. For the same reason, the

bootload program and the run-time loader processes were

desipned to read the ASCII files output by the file



conversion program, 0H86. The 0H86 output format is well

documented [20]. So the last step in the system generation

process is to run OF26, once per located process and CPU

kernel, to transform the binary object file into the ASCII

format expected by the loadin, processes. A skeletal example

of the output produced by OHS6 is contained in Appendix A.

7. System Generation Summary

B3efore proceeding into a discussion of the bootload

phase and the environment in which the bootload propram

runs, it will be bereficial to pause and examine exactly

what was accomplished during system generation, and exactly

where the initialization process stands when system

generation has teen completed. This thesis views system

,eneration as a time-sequence of events that bepins during

program design, an' proceeds through compilaticn, linking,

memory allocation, locating, and file conversion. At this

point, the ASCII representatior of the core imap-e of each

process to be loaded has been created and stored as a file

on the secondary storage (viz., floppy disc) in the ttS. The

disc also contains two other files: the bootstrap propraT

and the kernel base with the run-time loader process. A

graphic representation of the disc, as It appears at the end

of system generation time, is shown in figure III-7. Note

that for each process the loader needs the disc address

(i.e. track number and sector number) of the target file. In

the MfS-based loader, this address Is the actual
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BOOTSTRAP PROGRAM
(hexadecimal)

KERNEL BASE
(hexadecimal)

IDLE PROCESS
(hexadecira 1)

LOADER PRCESS
(hexadecim~al)

APPLICATION PFROCESS ni-
(hexadecim~al)

APPLICATION PRCCESS #2
(hexadecimral)

risc contents at end of System Generatior

Figure 111-3

62



filename, since the filename is used by the I IS-II

operating system disc routines on the MrS. The filenare is

one of the items of information available to the loader

process in the Process Definition Table.

D. TFE BOOTIOAD FHASE

When it is desired to initialize the system and run the

application programs, the bootload phase begins. In rost

computer systems, the bootload program is invoked by

activating a "reset" or "bootload" switch. This causes a

Jump to the first instruction of the bootload propram, which

is contained in POM. After the proposed hardware

enhancements have been made, and the corpiete operatirp

system has been developed, the bootload pro'ram for this

system will be placed on EPROM, and will be invoked in this

same manner. This section will discuss the sequence of

initialization actions that take place upon invoking this

ROM-resident bootload program.

like system Reneration, the bootload phase can be viewed

as a time-sequence of activities, beginnine when the

bootload switch is pressed, and ending when the operating

system kernel is running. When the bootload switch in the

multiple microcomputer system is depressed, it causes a

hardware interrupt to occur in all the processors in the

system. The interrupt handler for the bootload interrupt is

the FOM-resident bootload proorar in each processor.
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1. Invoking the ROY-resident Bootloader

The bootload routine is a small, very simple propram

that serves three basic functions. First of all, it must

determine which CPU in the system will be the "Bootload

CPU". The Bootload CPU will serve as the master or

controlling CIDI throughout the hootload and run-time loading

phases. While the bootload -roPrams in all CPU's are

Identi-al, the Bootload CPU will execute some sequerces of

instructions that the -ther processors will not. When the

bootlcad Drorams begin execution, each one will attempt to

read the same variable in global memory. This variable will

be initialized by the EPROM programs to a predetermined

value. As mentioned in the section on memory allocaticn,

access to global memory requires that a processor have

exclusive use of the system bus. There is a built-in system

bus "lock" that can be set as soon as a processor ;ets

control of the bus. This lock will be used to resolve the

conflict of multiple simultaneous access attempts. The

processor that first gets control of the bus will become the

Bootload CPU. This processor will then alter the value of

the global variable. When the bus lock is turned off, and

other processors are able, in turn, to access the variable,

they will see that the variable has been altered, and enter

a wait loop, awaitin further instructions from the lootload

CPU.
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To permit the programmer to silecify which physical

processor he wants his processes to run on (i.e., the

affirity of the process), there must be some way to identify

these processors. Physically, the processors can be

identified by some unique serial number cr identificatilcn

number. This type of Identification is inconvenient for the

operatinp system because the thysical processors can be

removed and replaced for maintenance, testing, and for

various other reasons. Therefore, the initialization scheme

needs a method of assigning logical CPU numbers to the

physical processors currently in the system. This can be

done in a manner similar to deterrining the Bocticad CPU. By

convention, this scheme assigns loical Cpu number 0 to the

Boatload CPU. The Bootload CPU enters its serial number,

which is rontaine in its POM, into the first entry of a

Rlobal structure called the CPUtTAPIF. The lootload CF7T then

sets a E!ob3l varia*le called LOGICALCPUtNU! equal tc 1,

and unlocks the lock which has been associated with that

variable. The other processors will row "race" tc access

IOGICALtCUTJtN'M. The winner of the race will set the lock,

enter its serial nu mbe r into the second entry in the

CPU TA?17, increment LOGICAL$CP NUWm3E?, and then unlock the

lock. This process will continue until all the physical

processors havm teen assigned a logical CPU number. The

Bootload CPTT will know how many CPU's there are in the

configuration and that all processors in the system rave
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been assigned a logical number after some fixed time period

(a few mrlliseconds) has elapsed. In addition tc the two CPU

numbers in the CP.$TBLE, each processor also has a

mailbox a location used for a primitive method of

Interprocesscr coemunicaticn with tne -ootlcad CPU.

2. AccoModatin; the Initial Hardware

ks Dreviously discussed, the hardware confieuration

does not presently include online secondar:r storage. and the

decision was rade not to write the bcotload into FPCi until

the development was complete. Some temporary alterations

were made in the initialization rechanisr to rermit the

devlorment to proceed with this initial hardware

configuration. The use of the MDS to simulate secondary

storage was mentioned previously. The bootstrap pro rar1

reads data from the serial port of one of the F_6/!2A

single-bcard conputers. A propram was written for the -7S

th'at reads the hexadecimalI object files from flo py disc and

outputs the hexadecirmal data to the MDS serial port. There

is a cable nonnecting the two serial ports. The cable is

made to allow a primitive sort of protocol between the two

systems via the clear to send" and "request to send" status

lines [2-1. This constrains the loading funtion to having

access to secondary storape from only one processor, rather

than from any processor on the statem bus. To simulate the

presence of an EPROQ bootload program, the ICE-E6 in-circuit

e. ulator was used to load the bootload prograr into rA'1.



Using the dual-port memory capability, the ICE-e6 car. load

the cotlcad into each proces5or's local memory. The IC?-E6

was alsc used to alter the interrupt vector in each CPT' So

that the preempt interrupt would transfer to the bootload

nrogram'. Finally, the processor connected to the -DS was

Fiven a sliihtly different version of the tootload proerram

that starts its execution by sending a preempt Irterrurt to

all other processors, simulatin the bootload swi tch.

3. loading the 2ootstraL Program

'"ith these preliminaries cut cf the way, tne

Bootload CP! can start the actual bootstrap loadlno"

function. This load involves the first access to disc by the

initialization mechanism. Since the bootload -rs'ran is

3PRO4-resident. simplicity is a primary concern. For that

reason, the bootloa program will merely read frc- a fixed

address on disc, and load the data into a fixed area of

global memory. For the same reasor, only the Blcctlcad C U

will access the disc. This simplifies the tootload proprams

by eliminating the need for a co!mplex synchronization method

to allow the nrocesors to share the disc. The bootload

program cn the Bootload CPU will merely read a sirngle disc

record, and load that record into a pre-specifled gIobal

memory buffer. Note that this disc record is alread:- in

executable fcrmat (viz., not a hexadecimal file . It wIl

then transfer control, with an tnconditlonal jumt, to the

location of the first byte in the buffer. This will transfer
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control from the EPRO1 bootload r-Iram in th.e 3octloaA_ CPJ

to the bootstrap propram just read in from disc. Figure

111-4 shows the contents of the system xemory after the

bootload prorram has been ruin.

4. Txpcuting the Bootstrap Program

The block of data just read in contains the

bootstrap orc ram developed durin system zeneratlon. Recall

that this program is designed to load the base layer

(kernel) of the operating system from dis- into :rimary

memory. Since each processor's lccal memory will cortain

parts of this ker.el, each processor will nee to execute

the ootstrao orpram to load its kernel. For sirlnioity.

all processors will share the same bootstrap program code,

that will be located in g-lobal RAM. The Tootload CPU (at

thlis point executing the boctstrap program) will dc the

actual disc read for all processors. This is consistent with

the rethod used to accomodate the the initial hardware

configuration as discussed above. The Bootload CPU will loai

the hexadecirral file containinz the base layer of the kernel

into a global remory buffer, liaving it in the hexadecimal

format. The Bootload CPU, since it is already running, will

then be the first processor to load the kernel into its
local memorr. The bootstrap- progn r .ncludes functions to

read the hexadecimal object f ile (the kernel) f ror the

global PA' : buffer, convert the data to its binary

(executable) representation, and load it at the addreses
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specified in the hexadecimal file. Recall that this load

address for each segment in the kernel is made up of the

sepment base address in the seprent base address record and

the load address offset ccntalred in the data record itself.

All other processors are still executine the EPROM

tootload proaram, waiting to be sipnalled by the Bootload

CPU via their "mailboxes". The Bootload CPU now signals each

CPU in turn to load its kernel, and then waits for a si-nal

that the CPJ has done so. Note that before slgnal!ing, the

Bootload CPU insures that the tariget CPU's kernel is in the

zlobal buffer- either read in from disc or still present

from the loading of a previous CPU. When signaled by the

Bootload CPU, each CPU transfers (jumps) from the EPRO.

bootstrap program to the global RAM bootstrap prograrr. It

then executes the routine to read the file (the kernel) fro7

the buffer, convert the data back to its binary

representation, and load it into the addresses specified in

the ASCII file. Since the identity of the kernel hexadecimal

file is well defined, and since the number of CPU's is known

(viz., available from the CPtU Table), this bootload

procedure is relatively simple. Recall that simplicity is a

primary goal during the bootload phase since the environrment

is only the bare hardware. As each processor corpletes its

bootloa ing task, it will perform an uncondlticnal lump to

the first location in Its kernel (now in executablE form).

The Bootload CPU will jurp to the kernel after all other
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CPU's have finished their bootloading taslk and signalled

this fact to the Bootload CPU.

This jump will simulate a preempt interrupt in the

Inner Traffi," Controller interrupt handler [7]. The jump is

to a special entry point in the interrupt handler routine

that is used only for initialization. This entry point saves

the processor register values, which include the logical and

physical CPU numbers, that rmust be saved for later use by

the inner Traffic Controller Scheduler. The entry intc the

Inner Traffic Controller marks the end of the bootload phase

and the transition into the run time phase. At this point,

all processors are executin.- in the kernel. The bootstrap

program is no long er needed, and will be overwritten. The

system memory at the end of the bootstrap sequence is

configured as shown in figure 111-5.

F. RUN TIME

The loading performed at run time is conceptually quite

similar to the bootloadinp discussed in the previous

section. One difference between the two ;hases is that the

run time loadin? involves all processes that are to be run.

But the main difference is that the "Bootload" function is

done tv run tine loader processes that run on the virtual

processor provided by the kernel. This implies that the

instruction sot now includes the operatinp system primitives

provided by the kernel (e.g. ITC _ADVANCF, ITCAWAIT, and
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CreateProcess). This provides a much more supportive

environment than the bare hardware of the bootload phase.

1. Invokinp the loader Processes

To understand exactly what happens when the bootload

DroPram jumps to the preempt handler in the kernel, it will

be beneficial to review just what is in the kernel base, and

how the contents of the kernel Po about perforrrin, the

remainder of the loadinz activities.

There are actually two processes in the kernel base.

The first is the idle virtual processor. Recall that this

processor is invoked when there is no other useful work

available to be run on a physical processor. The other

kernel process is the run time loader process- just a

modifled version of the O'Connell and Richardson Femory

manaeer process [18]. All kernel segments are included in

the address space of both these kernel processes.

The virtual Processor Man (VPM) in the Inner Traffic

Controller was initialized durinp! system desipn to reflect

that the tdle virtual processor is "running" or each CPU.

The memory manager (i.e. loader) is initialized in the ready

state and with a high priority. All other virtual processors

are in the idle state.

The Traffic Controller's Active Process Table (APT)

is initialized with NO applications processes. All virtual
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processors visible to the Traffic Controller are shown to be

runninz an idle process.

Because of this initial state created durine system

generation, the jump to the Inner Traffic Controller at the

end of the bootload phase appears to the kernel as a preempt

interrupt of the idle virtual processor. This preempt causes

the higher priority loader process to be scheduled and run

on each physical processor.

These loader processes all have the Process

Definition Table in their address space as an external data

sement shared by all loader processes. This table is the

primary data base used to drive the remainder of the loadinR

function.

2. Icadinp the Application Processes

Now that the operatinR system kernel is rinning on

each Dhysi'al processor, it can be used to load the

application processes from disc. Since each application

process exists as a hexadecimal object file on the disc, and

since the loader processes have a complete description of

each application process in their address saces (viz., the

Process Definition Table), the remainder of the loading

tasks are relatively straightforward. This will involve

readin. each application process from the disc, placinp, it,

in executable (i.e. binary), form at the appropriate

location in the system memory, identifying the process to
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the kernol, and finally, causing the kernel to sched-'.e and

execute the application processes.

The Bootload CPU still serves as the system rmaster, and

still makes all disc I/O requests. Since their register

values, including their serial nu,rbers and !ngical CPU

numbers, were passed to them at the bepinninr- of run time,

each processor can determine whether or not it is the

Bootload CPU (i.e., is its loical CPU number 2? If it is

not, the loader process will dc an ITC_AWAIT, until it is

signalled to proceed (via an !TCADVANCP) by the Bootload

CPU. The sequence of operations performed at run time call

for the Bootload CPU to read the first non-kernel

hexadecimal object file from the disc and to store It in the

zlobal PA" buffer. The Eootlcad CPU then check- the Affinitv

in the Process Definition Table to determine which physical

processor the process is intended to run on. It will then do

an ITCArVANCE on the appropriate eventcount for the loader

process in that CPU. Note that there is the speclal case cf

application processes beinz loaded on the 3ootload CPU. in

this casp, the signalling will be slightly different. Put

this will require only a minor addition to the loader

pro.ram.

The desianated processor's loader process will load

and convert the hexadecimal object file as described in the

previous section. In addition, it will extract from the

hexadecimal object file the CS and IP register values. It
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will enter these values into this loader process's Process

Parameter Flock, alone with the SS reeister value from the

Process ]Definition Table. The loader process then calls the

kernel Traffic Controller procedure "CreateProcess",

passinp the address of the Process Parameter Blocc as an

argeument. Create-Process makes the necessary entries in the

Active Process Table to describe the just-loaded process,

and initializes the kernel stack for this process.

Create-Process then returns into the loader process from

which it was called. The loader process will, in turn,

notify the Bootload CPU that it has finished, and the

Bootload CPrT will read in the hexadecimal object file for

another prccess.

3. Initiatine Anplication Process Execution

This sequence of events is repeated until the loader

process on the Bootload CPU finds a null entry in the

Process refinition Table, which sienifies that all processes

have been loaded and created. This means that all system

Initialization functions- system generation, tootloadin,?,

and run-time loading- are completed, and all application

processes are created, loaded on their respective

processors, and in the ready state. The only thina_ required

now is for the ootload CPU to call the ITC SET ?'F .

procedure for each virtual processor known to the Traffic

Controller and then do an ITCPWAIT. This will cause the
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normal scheduling fu nctions to run the highest priority

process that is ready to be run on each processor.

F. S"jMAw v

In this chapter, the entire sequence of events required

for initialization of a multiple microcomputer syster hAve

been examined. Each of the initialization phases - system

generation, bootloading, and run time - and th- environments

in which they occur, have been analyzed. This analysis was

intended to show the reader how initialization can, indeed,

be simplified by a careful sequencing of initialization

activities.
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IV. SUAm AEY AND CONCLUSIONS

A. SITMA-4 v

The ?oal of this thesis has been to develop a system

initialization mechanism fcr the Intel EE56-based multiple

microcomputer system to be used by the Solid State

Laboratory at the Naval Post;_raduate School for smart

sensor r=search. A secondary goal, frcm the cutset, has

been to present a system initialization design philosophy

that would help fill a void in current computer science

literature. This design philosophy asserts that the issues

of system generation ard bootstrap loading deserve a level

of consideration equal to, and concurrent with, operating

system issues. The basic premise of the thesis is that

simplification leads to a mcre versatile and rcb'ust design

and, subsequently, to a system initialization mechanIsm that

is easily ur erstocd and readily adaptable tc :a variety of

hardware and operatin. system coi. fig:ration5.

The simplification in this desirn apprcach is a-hieved

by two means. The first is a core-image driven lcader. This

technique involves creatlng a copy of the base layer of the

operating system as it should appear in primary merory

immediately prior to execution. This core imaFE is then

stored on some secondary storage medium. When it Is desired
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to initialize the system, this core imape is merely lcaded

into primary memory and control is passed to the first

instruction.

The other, and probably more meanin.'ful, means of

simplification is to carefully sequence th= required

initialization activities such that each is perfcrmed in the

most supportive environment available. This transfers

functional complexity to a phase of initializatio that

enjoys the most operating- s7Tst em and utility proram

support, and removes possible complexity from the bare

hardware environment of the bootload program. Since the rost

supportive environment in this application is available at

system generaticn time, the ,oal was to acccmplish as many

initialization activities as possible during this phase.

With the assumptions (based on the aplication for which the

system was designed) made at system Feneration time, this

thesis was able to fully exploit this most supportive

environment. In so doing, the -eneration of the comrlete

core image and all mermory allocation were acccmplished

durirg system Peneration. As the core image of each :rocess

is created, the identity of the process (viz., its addre5s

space and execution point) were encoded into the ima,.e. Thus

every process in the system could be comp~etely

characterized with information containe! in its core image.

This capability creates a compilation-independence that is

important to a general purpose initialization rmechanisr.
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The system initialization scheme desigred for this

thesis makes extensive use of the operating system kernel

primitives avalable at run tire. In particular, the

ITCADVANCE and ITCAWAIT primitives are used for

interDrocess cormunication lurine the loading of the

application processes, and the Create_Process furcton is

used to identify the application processes to the kernel.

3. FOILlOW-ON 'WORK

This thesis has scratched the surface of an extremely

interestin4 and challenping research area. But in developin2

the initialization mechanism discussed here, it broueht to

lipht many follow-on research ideas. Naturallyt. the first

follow-on work should concentrate on comPletinp the

implementation of the design presented in this thesis. 'he

design and implementation should then be extended to

automate as many of the manual functions as possible. This

should include complete automation of the !inkin: and

locatinz processes, possible elimination cf the file

conversion pro-ram, and automated memory allccatlor as

discussed by O'Connell and Richardscn [1C]. This would

provide programmatic creation of the Process Definition

Table, initial memory map, and the other systr

initialization data structures. This effort will require

additional documentation from the Intel Corporation on the

development tools ard file formats discussed in Chatter !I.
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Recall that this thesis made several assurpticns to

Simplify and expedite the development process. Near-term

resear-h efforts might attempt to eliminate sore cf these

assumptions, particularly those abnut the static nature of

the run-time environment. This wculd result in a m, ore

generally applicable mechanism that would be less dependent

on a priori knowledge about the system confiiguration. In

order to achieve this ?enerality, it will be ne:essarv to

automate most of the functions that are done manuall'r in

this thesis, particulirly the memory allocation. The desiPn

of this initialization rechanism is compatible with the

memory allocation scheme designed by O'Connell and

Richardson, and should accept such a run-time r-eory

allocation function without major alterations.

Of Irnme( ia te concern to the smart sensor research

project should be the integration of the hard disc subsystem

into the hardware confipuration. The availatility of on-line

secondary storage would permit further simplification of the

initialization mechanism, and remove the need for the

"controlling loader".

The most challenping research area, however, is dynaric

reconfiguration and its subseque'nt benefit- fault tclerance.

These are state-of-the-art issues that are also lon,' term

goals of the smart sensor preoram. They are a:sc aIrost

mandatory for a viable, operational smart sensor plaform.
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C. CONCLUSIONS

The work done in this thesis has shown the feasibilit:,

of developine a simple, versatile system initializatio

mechanism based on a core image approach and tne careful

Sequencing of initialization activities. The desig-n proposed

in this thosis has net been fully tested, but sufficient

functions were implemented to support the basic concepts

proposed. The experience with the system thus far has shown

that the concepts are not difficult to put into practice,

and that they do result in a simple, easy to understand

mechanism for loading and startine a trccess on a tare

machine. The design proposals develored n this thesis

should prcvp beneficial to future initializaticn development

efforts, even where the hardware and operatine system are

different.

The thesis has also confirmed the value of an ooeratine

system with explicit seents and processes, an! has shon

how such an operating systpm structure can be explolted tc

s5rnificantly simplify the initialization mechanisr. As this

structure for micrccomputer operating systems becomes mcre

widely implemented, the methods used in this thesis can be

widely apolied to simplify the entire system initialization

process.
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APPENDIX A. UTILITY PROGRAY OUTPUT

A. OBJECTIVES

This appendix is provided to further acquaint the reader

with the intel software development utility prc.,rams used in

this thesis. Each prop-ram and its pertinent parameters and

options will be explained, and a Sample out n, t wil' be

provided. While these programs are Intel rroducts, ard are

designed soecifically for the Inteilec "ES with the IS I:-i

overatinP system, they are rep)resertative of rc-rar s

provided with other computer systems. The sample outputs at

the end of this appendix are based on a very Simple FL/'-E

program, written only to demonstrate the develocment utlity

proprams. The source code for the sample proiram is shown in

figure A-!.

B. THE Pl/M-6 COMPILER

.s mentioned in Chapter II, the PL/m-E6 Ccmpiler

translates the PI/1M-9 source statements into FOP6 machnine

instructions. The MOr7 control in the corrard line

determines the degree of segmentation. In the sample rorram

compilation in figure A-2, the CODE control was used tc

cause the compiler to list the E286 1rachine code

instructions 7enerated for each Pl/M-8S instruction. Note
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that the lengths of all the sepments produced ty te

compiler are listed at the end of the output.

C. THE LINKS . PROGPAI

The linker propram, as discussed in Chapter II, combines

the various program molules that make uL a process and

resolves any external references. At the sare tire, it

adjusts the relative addresses in the mcdule sc that they

are all relative to the bepinning of the output odule. The

Sample LINK9C. outDut listine in fipure A-3 shows the list cf

segments produced fcr t e sample program by the Intel

linker.

D. THE IOCE6 PDOGRAP

The locator proi-ram is used to assign physical memory

addresses to the relative addresses In the linker output

module. IOC96 provides several diagnostic and cutput fcrmat

controls [20]. Dia-nostlc information includes a symrol

table and a complete memory map, showing the results of the

locator function. This information is sent to a printable

disc file unless otherwise seclified. Output module controls

are used to control the content or the output module, the

order of the segments in the module, and the assipnmert of

physical m=rrory locations to the s~pmerts. The controls of

primary, concern here are the ADDRESSES and SEGM'ENTS

24



controls. As seen in figure A-4, these controls assign a

base address to each segment in the process.

The other control of interest during 5yste

initialization is the SEGSIZE control. It is used to specify

the size of one or more segments in the output mdnulo. This

control is used during system peneration to build the kernel

stack frame discussed in Chapter III.

The sample IOCE6 output in fipure A-4 includes the

process's symbol table and memory map. For ill1us trati ve

purposes, the SECSIE control was used to add 22 yvt s tc

the size of the stack segment.

E. THE OHr PPOGRAM

The final utility prozram used during system eeneration

is the file conversion program, OHS. Recall that this

program translates the binary object file (for which very

little documentation is available) into an ASCII hexad ecim a

object file (which is very well documented). The sample

output from OF86 is shown in fiure A-5. The blank spaces

and line numbers were added te improve readability, and do

not occur in the actual outrut file.

Each hexadecimal file produced by OHS6 is made up of

four different record types. These record types are

explained below.
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1. Record Type 00 is the Data Record. These records

contain the actual program code and data that make up each

process.

2. Record Type el is the End-of-File Recorl.

3. Record Type 02 is the Extended Address Record. This

record specifies the segment base address for the type £

records that immediately follow it. For example, the type V2

record in line 11 of figure A-5 contains the segment base

address (e1eOF) for the type U records in lines 12 through

18.

4. Record Type e3 is the Start Address Record. It

specifies the Code Segment and Instruction Pointer rezister

values for the first instruction in the Code Segrrent. in the

example, the CS register value is 0100H, and the I? register

value is £ eEF. The locations from the address specified in

LOC6 (100) to the address specified in the Start Address

Record (IeH) are used by the compiler to store the

addresses of external data segments, and the DS and SP

register values (see lines 01 through e4).

Each of the records in the hexadeciral object file

consists of several fields. These fields, 2nd their effect

on the loadinp function is explained below.

1. The Record Mark Field is used as a record delimiter.

0R86 uses an ASCII colon (e3AH) to signify the beginninF- of

each record.
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2. The Record Length Field contains two ASCII digits

that specify the length, in bytes, of the date or

information contained in the record.

3. The load Address Field contains the address offset

from the segment lase address (in the type e2 record) for

the first data byte in the reccrd. Note that only type 00

records have load addresses other than 2009. Recall from

Chapter II that there is no boundary check made when

addressing into a segment. The exact lead address for a

particular data byte can be calculated as follcws:

EFF. ADDR. = EASE ADDRESS [(DRLA * DR,) x1ortTLO 6-KI

Where DRIA is the Data Record Load Address, and ElI is the

byte index within the Data Record.

4. The Pecord Type Field specifies the type cf the

record, as described above.

5. The Data Field contains the actual data to be

converted to binary and loaded into primary memory. This is

a variable length field that may be from 2 to !0H bytes

long.

6. The Checksum Field is used for error detecticn in the

loading and translating process. It contains the twos

complement of the e-bit sum of the bytes that result froir

converting the ASCII bytes back into binary.
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SUMMARY

This appendix was intended to acquaint the user with

more details concerring the software developrrent utility

programs used to develop the system generation mechanism

described in this thesis. It has provided a very simple

PL/M-86 prooram and the output from each of the development

utilities. The reader desiring additional information about

these programs should refer to the MC -E Software

Development vtilities Operating Instructions fcr ISIS-II

Users [20].
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SOURCE LISTING

/* Sample Program to der onstrate the software
development utility programs used during 4/

system generation. This program simply ':
/* increments a global array element nine/' times and then prints t,-e result on the
/*- terminal screen. */

COUNTER1: DO;

DECLARE I BYTE, /*loop index-/
ARRAY( ) BYTE EXTERNAL, /':'external array*/
PROMPT(*) IYTE INITIAL( "VALUE IS: ),
STATUSPORT LITERALLv ,'DSH',
DATAPORT LITERALIY 'eLAH ,
XMITRDv LITERALLY '001H';

OUTCHAR is a procedure which tests the *1
/* status of the serial I/O port that is '/
/4 connected to the terminal. If the rort 'I

is "ready", an ASCII character is cutput
/1, to the CRT screen.

)/.

OUTCHA.: PPOCFDJRE (CHAP);
DECIARE CHAR BYTE;
DO WHILE (INPUT(STATUSPORT) ANfl xTITRIY) =;

END; /* wait until ready to transmit-/'
OUTPUT(DATAPORT) = CHAR AND e7FH;
END; /* of OUTCHAR declaration 4/

ARRAv(O) = 0; /* initialize sur /

PL/M-E6 Source Listing

Figure A-i
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DO I = e TO 9;
/* increment-the sum

ARnA7(0) = ARA7(C) +
END; /* of DO loop */

DO I = 0 TO IAST(PROPT);
/* print the header" :/
CALL OUTCTAR(PRcMPT(I));

END; /* of print loop */

CALL OUTCRAR(ARRAY(e)); /* Print the sur =/

END; / COUNTER1 program */

PI/M-86 Source Listing

Fi*rure A-i (cont'd)

90



PLM-F6 CO"PILER COUNTER!

ISIS-I P / /-6 V1.2 COMPILATION OF -ODT COTJNT£Z!
cB:FCT MODULE PLACED IN :F1:CNTRl.OBJ
COM PILEP INVOKED BY: PLYS6 :F!:CNTRl.SRC CODE !_A,,G,"

DATE(l JUNE 6O)

Sample Prozram to demonstrate the software
development utility programs used during

/* system zeneration. This prograr simply
increments a global array element nine
times and then prints the result on the

/* terminal screen.

COUNTER1: DO;

2 D-CLA3E i BYTE, / loop index */
ARRAY(2) BYTE EXTERNAL,
PROMPT(' ) BYTE INITIAL('VAL77 IS: "),
STATUSPORT lITERALLY 'e&E',
DATAPORT LITERALLv '"DAH",
XMITRDY LITERALLY "OelE';

/* OUTCHAR is a procedure which tests the *1
/* status of the serial I/O port that is */
/- connected to the terminal. If the port

is "ready", an ASCII character is output
to the CPT screen. -/

/:*

3 1 OUTCHAR: PROCEDURE (CHAR);
; STATEMENT # 3

PL/M-E6 Compiler Listing

Figure A-2
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OTJTCHAR ? ROC NEAR
0073 55 PUSH Pp
0074 @BEC Mov B? D,SP

4 2 DECLARE CHAR BYTE;
5 2 DO WEII.E (INPrJT(STATUSPO?.T A~r xviiR:fl v

END;
;STATTYENT g 5

0076 E4ID8 IN OD 8

0078 F6CV01 TEEST A1,1H
007B 7403 JZ * A
007D E90,100 imp r

;STATEMEFNT 0 6
e080 E9F3FF j~p @1

7 2 OTJTPTT(DATAPORT)' CHAR. AND 07F-;
STATT>ENT g: 7

0083 BA4624 mov AL,[PPI.CEAR
0086 EeOOF AND AI.,7FF
e089 E 6TLA O UT eEAF

6 2 END;
;STAT7E "CNT # 2

00211 5D POP 1
MC8 C2e2'O0 RET 2H

OUTCHAR ENDP

9 1 AR-RAY(0) = 0; 1* initialize sum ~
STATEMENT 9

0008 FA CLI
0009 2E8E160400 MIOV SS,CS:0PSTACK$FAMBT-
M0E BC0600 MOV SP,@@STAC1(0O-F.QE:-
0011 8BEC MIOT BPSP
0013 2ESEI-7600 IMOV DS,CS:teDATA FnA-AM
0018 PB STI

0019 2EC41FOO00 LEE FT,CS:0AFRRAY
001F 26050700 'voV ES:ARRAV [37,eF

10 1 Do I = e TO 9;
;STATEMIENT 1?

0022 C6060000ko MOV I,eH

0027 803FO00009 CM?1 I,9H
002C 7603 JBF +5H
002E E9110e IMP 04

PL/M-66 Compiler Listing

Figure A-2 (cont'd)
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11 2 ARRA!(0) = ARRAv(O) + 1
/* increm~ent sum *

STATPMENT 411
0031 2EC41E2000 LES BX,CS:coAERAY
0036 26FE07 INJC E-S:ARAY[3X]

12 2 END; /*' DO LOO0P'~
;STATE IENT # 12

U039 FHeeeec0 INC I
0 03D 7403 JZ
003? E9ES5FF Jy.p 03

13 1 DO0 I = 0 TO LAST(PP.OMT);
/* print the "header" */

;STATEmFNT # 13
0042 C6C6000000 MIOIV IOH

G5:
0047 803700000A CMp I,OAH
004C 7603 JPE
004F E915e2 J? @6

14 2 CALL CUTCEkR(PR0OMPT(I));
;STATEM1ENT 14-

0051 SA1FMOO tM1OV E1,1
0 055 B700 MOV BE,0H
0057 FF7701 PUSH PBCMPT[EX] ; 1
Oe5A ECE162e CALL UT C HA?

15 2 END;
STATEMENT 15

Oe5D He06U000 INC I
0061 7423 J7 ,5
0063 E9E1FF JM1P c

M6
16 1 CALL OUTCHAt(ARRAY(OY);

/p rirt the sum~*
; STATFYFNm

0066 2EC4170000 LES BX,CS:?1A0RAV
0063 26FF37? PUSF -ES :A RPA Y[ EX]
006? ESOM0 CALL OUTCFARR

17 1END; /* COUNTER1 I-V
;STATF"FNT 17

0071 FB STI
0072 F4 HLT

PL/M-86 Compiler Listing

Figure A-2 (cont'd)

93



MODULE INFORMATION:
CODE AREA SIZE = 009FH 143D
CONSTANT AREA SIZE = £OOOF OD
VARIABLE AREA SIZE = O££CH 12D
MAXIMUM STACK SIZE = 06H 6D
52 LINES READ
0 PROGRAM ERROF(S)

END OF PL/M-86 COMPILATION

PL/M-86 Compiler Listing

Figure A-2 (cont'd)
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LINKS6 1ISTING

ISIS-II MCS-F6 LINKER, V1.1, INVOKE-D 2Y:
LINK86 :F1:CNTH1.OEP, :F1:ARRAY.OE: TO :1CT1L~
LINK MIAP FOR :F1:CNTP1.lNK(COUjNT7E?1)

LOGICAL SEG'ENTS INCLTE:
LENGTH AI'D72SS SEGMENT CLASS

00FFH ----- COUNTE-Ri _CODEF CODE
eecH ---- COUNTERli ATA DATA
~0006H ---- STACK STAGE
0MB ---- MEMORY METM~O Y

ee0F ---- ARRAYLBC CODF CODE-
002 --- APRAYDEC DATA DATA

INPUT MODULES INCLUDED:
:F1 :CNTR1 .OB (COUNTFR1)
:F1 :AR?A7.OBJ (ARAYDFC)

LINK86 Listine

Figure A-3
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ISIS-II MCS-86 LOCATER, V1.1 INVOKED BY:
LOC86 :FI:CNTR1.LNK TO :Fl:CNTR1.RUN ADDRESSES(SEGMENTS&
(COUNTER1 CODE(1000E),COUNTERI DATA(2000H),STACK(30eeH),&
ARRAYDEC DATA(3eeeeE.),ARRAYDEC CODE(3lee0H),&
MEMORT(3lleeH)))&
SEGSIZE(STACK(+2eH)) RS(O TO OFFFH)

SYMBOL TABLE OF MODULE COUNTER1
READ FROM FILE :FI:CNTR1.LNK
WRITTEN TO FILE :FI:CNTR1.RUN

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL

300 0000H PUB ARRAY

ARRAYDEC: SYMBOLS -AND LINES
3110H 0000H SYM MEMORY 3000H 0000H STM APRA!
310OF 0000H LIN 3

MEMORY MAP OF MODULE COUNTER1
READ FROM FILE :Fl:CNTRI.LNK
WRITTEN TO FILE :Fl:CNTR1.RUN

MODULE START ADDRESS PARAGRAPF = 0100H OFFSET = 008F
SEGMENT MAP

START STOP LENGTH ALIGN NAME CLASS

01000H 0108EH 008FH W COUNTER1 CODE CODE
e2eeFH e2eeE eoecF w COUNTERI DATA DATA
0300H 03025H e026H W STACK STACK
30O eF 30001 e0%2E W ARRAYDEC DATA DATA
31eE 3Men Pee W ARRAYDEC CODE CODE
31100H 31100H 000H W MEMORV MEMORv

LOC86 Listing

Figure A-4
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01 : 02 0000 02 0100 FB

02 : o4 0000 00 0000 0030 CC

e3 : e2 oeee e2 0100 nB

04 : 04 0004 00 0003 0002 F3

05 : 02 000? 02 0200 FA

e6 le 10 02 H0 474C4F42414C2e564l4C55452049533A AA

07 :02 0012 00 2020 AC

08 : 02 0000 02 0107 F4

09 : 10 0003 00 55ePECE4DEF6Ce174e3E9e3eeE9F3PF ?e

10 : OC 0013 00 8A4604SOE07FE6DA5DC202ee 4D

11 : e2 eeee e2 eiee PB

12 : 10 0008 00 FA2ES!16e400DCO6008BEC2E8ElEO600 PF

17 : 10 ME5 00 7702EE16ee0 06oeee74e3E9EF2FC4 El

18 : OB 0068 00 lEO00026FF37IE80200FPF43A

19, : 04 oeo e3 oieoero~
20 : 00 0000 01 FF

0H66 Listing

FIGURE A-5
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